Contributing to the Development of *NGSS*-Based Large-Scale Assessments

Tom Regan AAPT Summer 2014 Session AA03

NGSS Lead States. 2013. *Next Generation Science Standards: For States, By States*. Washington, DC: The National Academies Press.

1

My Perspective

Science Assessment Developer

- AAAS Project 2061—research related to BSL, SFAA, NSES
- American Institutes for Research—large-scale state science assessments
- Currently at The College Board
- HS Physics teacher
- Participated in AAPT review of NGSS 2nd Draft

The views expressed here are my own.

Theme and Purpose

Theme: Large-scale science assessment* would benefit from more physics community involvement

Purpose

- To suggest specific ways for the physics community to get involved in large-scale assessments
- Issues of particular relevance to NGSS will be highlighted.

Assessment Goals

The assessment is fair.

- Transparency (know what will be assessed, with sufficient time to prepare)
- Matches what you teach (content and emphasis; content and student tasks)
- The assessment presents correct physics.
- The assessment provides useful information.
 - Information about important things
 - Sufficient granularity
 - Timeliness
 - Sufficient information
- The assessment is inexpensive

>\$

Time (preparation and testing)

Overview of Large-Scale Assessment Design Process

- State issues RFI (Request for Information) and RFP (Request for Proposal), evaluates proposals, and chooses a vendor
- SOW (Scope of Work) is written
- Item Specifications document is written.
- Test Specifications/Blueprint is written.

Item Development Begins

RFI/RFP and Assessment Goals

RFI: Request for Information: opportunity to learn about vendor capabilities RFP: Request for Proposal: opportunity to shape the contract

- Usefulness—ensure the vendor can assess what you think is important, and can get the most information from the student responses
- Correctness—ask vendor to demonstrate subject-matter competence

Inexpensiveness—watch for construct-irrelevant bells & whistles

RFI/RFP and Usefulness

Sample Questions:

- "How will you assess each of the science practices?"
- "How will you assess the student's facility with common scientific representations (e.g. free-body diagrams, ray tracing)?"
- "How will you extract diagnostic information from student responses, including constructed-response items?"
- Please describe a test blueprint that is suited to assessing the NGSS."
- You do not have to be familiar with large-scale assessment simply ask the vendor to tell you what they can do.

RFI/RFP and **Correctness**

First decide what "subject-matter competence" means to you:

- Expertise: Physics or Physical Science or High-School Science or Science
- > Expertise: Science Content or Science Practices
- Experience: Teaching or Assessment or Research
- Then ask the vendor to demonstrate those characteristics.

Large-Scale Assessment (LSA) Context Note: ELA and Math assessment are not strongly discipline-specific.

RFI/RFP and Inexpensiveness

- Expensive elements of the assessment system should be worth the expense.
- Vendor should articulate rationale for such elements.
- Example: simulations/animations are expensive in terms of development time and cost, possibly bandwidth, possibly testtaking time.
- "What information will be provided by simulations/animations that cannot be provided by cheaper item types?"

Scope of Work and Assessment Goals

Scope of Work: <u>Detailed</u> description of what vendor and client will do over the life of the contract.

Correctness—ensure that subject-matter competence is applied at appropriate points in the development process

Usefulness—ensure that useful information is reported.

Scope of Work and Correctness

Vendor internal item development

- Specify the roles of subject-matter-experts versus non-experts.
- State internal item review

Volunteer to assist.

- Content Committee Review
 - Specify subject-matter-expert representation
 - Discipline-based committees ("Physics" or "Physical Science") versus Grade-level-based committees ("High School Science")
- LSA Context note: Writing/negotiating the SOW is laborious, so it is sometimes assumed that what works for ELA and/or Math will work for Science.

Scope of Work and Usefulness

Ensure that diagnostic information is built into the system:

"Misconceptions will be built into the item bank and multiplechoice item distractors will be linked to the misconceptions."

Item Specifications and Assessment Goals

The Item Specifications document describes the desired items.

- Learning goals to target
- Item types
- DOK/CD

Often it is an augmented version of the standards (the NGSS)

- Fairness (transparency)—ensure timely availability of document
- Correctness—fix any errors in the standards
- Usefulness—if you want information about it, there's got to be a standard.

Item Specifications and Fairness

- Typical standards documents (and therefore item specs) are insufficiently detailed, so it's not clear what will be assessed.
- Stuff the Item Specifications with details!
 - List all assessable forces.
 - Describe the assessable physical situations
 - Add necessary definitions like "model" "explanation" "evidence"—SCBSCS* is a good source.
 - LSA Context Note: "e.g." is very common in standards documents. Replace it with "i.e." and complete the list!
 - LSA Context Note: There are differing opinions about making Item Specifications public.

14

- Use the Item Specifications to shore up content weaknesses in the standards.
- Strategy: Add "Testing Points" to every Performance Expectation
- The Testing Points (1) state content correctly and (2) add specificity (improving Fairness)
- State that assessment items will be based on the Testing Points.

NGSS Performance Expectation HS-PS2-5

Plan and conduct an investigation to provide evidence that an electric current <u>can</u> produce a magnetic field and that a changing magnetic field <u>can</u> produce an electric current.

Assessment Boundary: Assessment is limited to <u>designing and</u> <u>conducting</u> investigations with provided <u>materials and tools</u>.

- "Can" is not appropriate.
- "limited to designing and conducting"—why not also analyze data?
 What "materials and tools" are acceptable?

Item Specifications and Testing Points

Sample Testing Points for PE HS-PS2-5

- Assessable student activities
 - Planning investigations
 - Conducting investigations
 - Analyzing the data from investigations.
- Assessable content
 - An electric current produces a magnetic field.
 - A changing magnetic field produces an electric current.
- Assessable materials and tools:
 - Batteries and power supplies
 - Wires, wire loops, and solenoids
 - Permanent magnets and electromagnets
 - Ammeters, voltmeters, gaussmeters, magnetic compasses

- Any new Performance Expectations (see next slides) that are written will go in the Item Specifications
- If it's not in the Item Specifications, it won't be assessed!

Test Specifications/Blueprint and Assessment Goals

The Test Specifications/Blueprint describes the test.

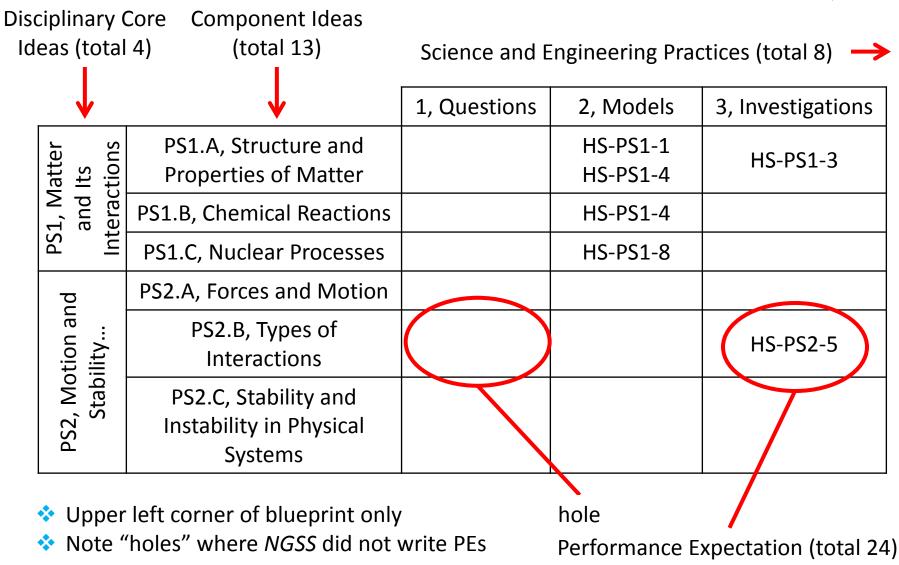
- Total # of items
- # of items per Learning Goal or LG Group
- # of items per other categories

It expresses priorities.

Usefulness—reporting categories, granularity...

We'll discuss this with reference to a sample blueprint.

NGSS-Based Test Blueprint


A general strategy for NGSS-Based Blueprints

- Define the test in terms of the Framework*
- Define the *items* in terms of the NGSS
- Say your priorities are
 - Science content
 - Science practices
 - not CCC, DOK...
- Pieces of sample "High School Physical Science" Blueprint
 - Framework Core and Component Ideas in the Physical Sciences
 - Framework Practices for K-12 Science Classrooms
 - NGSS High School Physical Sciences Performance Expectations (secondary connections not included)

National Research Council. 2011. A Framework for K-12 Science Education: Practices, Crosscutting₂₀ Concepts, and Core Ideas. Washington, DC: The National Academies Press.

Possible Implementations of Blueprint Structure

Report a subscore for every <u>NGSS-populated</u> <u>cell</u>

- ≥ 28 populated cells @ 10 points per reporting category → 280 points @1min/point → Almost 5 hours. Expensive!
- Blueprint has many holes
 - Usefulness/Fairness: Is it an adequate representation of the curriculum?
 - Subscore validity: Some Practices are assessed with only one of the thirteen Component Ideas.

Report a subscore for <u>every cell</u>

- ➢ 8 practices × 13 component ideas = 104 cells → 1040 points → 17 hours. Extremely expensive!
- Requires 78 new Performance Expectations to fill the empty cells.

Suggested Implementation of Blueprint Structure

Report on every <u>column</u> (Science Practice) and every <u>row</u> (Component Idea)

Need 10 points per Science Practice

Need 10 points per Component Idea

Write additional PEs to bolster subscore validity. 24 new PEs can ensure that

- Each Component Idea subscore includes at least one item from at least four of the eight Science Practices
- Each Science Practice subscore includes at least one item from each of the four Core Ideas.
- Position new PEs such that items 'count double'

♦ 130 items → 2+ hour exam. Long but perhaps reasonable for year-end.

Conclusion

I hope this presentation has given you some starting points for contributing to large-scale assessments based on the NGSS.

Decide what you want and ask for it.

Nothing ventured, nothing gained.